Direction-of-Arrival Estimation with Coarray ESPRIT for Coprime Array
نویسندگان
چکیده
A coprime array is capable of achieving more degrees-of-freedom for direction-of-arrival (DOA) estimation than a uniform linear array when utilizing the same number of sensors. However, existing algorithms exploiting coprime array usually adopt predefined spatial sampling grids for optimization problem design or include spectrum peak search process for DOA estimation, resulting in the contradiction between estimation performance and computational complexity. To address this problem, we introduce the Estimation of Signal Parameters via Rotational Invariance Techniques (ESPRIT) to the coprime coarray domain, and propose a novel coarray ESPRIT-based DOA estimation algorithm to efficiently retrieve the off-grid DOAs. Specifically, the coprime coarray statistics are derived according to the received signals from a coprime array to ensure the degrees-of-freedom (DOF) superiority, where a pair of shift invariant uniform linear subarrays is extracted. The rotational invariance of the signal subspaces corresponding to the underlying subarrays is then investigated based on the coprime coarray covariance matrix, and the incorporation of ESPRIT in the coarray domain makes it feasible to formulate the closed-form solution for DOA estimation. Theoretical analyses and simulation results verify the efficiency and the effectiveness of the proposed DOA estimation algorithm.
منابع مشابه
A Direct Coarray Interpolation Approach for Direction Finding
Sparse arrays have gained considerable attention in recent years because they can resolve more sources than the number of sensors. The coprime array can resolve O ( M N ) sources with only O ( M + N ) sensors, and is a popular sparse array structure due to its closed-form expressions for array configuration and the reduction of the mutual coupling effect. However, because of the existence of ho...
متن کاملDOA estimation of mixed coherent and uncorrelated targets exploiting coprime MIMO radar
We propose a new scheme to estimate the directions-of-arrival (DOAs) of mixed coherent and uncorrelated targets exploiting a collocated multiple-input multiple-output (MIMO) radar with transmit/receive coprime arrays. In the proposed scheme, the DOAs of the uncorrelated targets are first estimated using subspace-based methods, whereas those of the coherent targets are resolved using Bayesian co...
متن کاملSuper Nested Arrays: Linear Sparse Arrays With Reduced Mutual Coupling - Part I: Fundamentals
In array processing, mutual coupling between sensors has an adverse effect on the estimation of parameters (e.g., DOA). While there are methods to counteract this through appropriate modeling and calibration, they are usually computationally expensive, and sensitive to model mismatch. On the other hand, sparse arrays, such as nested arrays, coprime arrays, and minimum redundancy arrays (MRAs), ...
متن کاملBiologically Inspired Four Elements Compact Antenna Arrays With Enhanced Sensitivity for Direction of Arrival Estimation
A new four elements compact antenna array is presented and discussed to achieve enhanced phase resolution without sacrificing the array output power. This structure inspired by the Ormia Ochracea’s coupled ears. The analogy between this insect acute directional hearing capabilities and the electrically compact antenna array is used to enhance the array sensitivity to direction of arrival estima...
متن کاملتعیین حد پائین واریانس خطای تخمین برای زاویه سیگنال دریافتی با استفاده از روش CRB در آنتن های آرایه ای
One of the important issues in many of array systems such as Radar, Sonar, Mobile, and satellite telecommunications is the estimation of DOA of narrowband received signal. CRB is very important in evaluation of parameter estimation. CRB is the lower bound estimation error variance for any unbiased estimation. In this paper, the array antenna with equal distance arrays is extended in two separat...
متن کامل